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Figure 1: The CloudLight pipeline, as implemented for three known global illumination algorithms: voxels, irradiance maps, and photons.
Note the shift from cloud (blue) to local computation (black), suggesting use of different algorithms depending on the targeted user device.
Arrow thickness indicates required bandwidth; note we always put the network at the narrowest point.

Abstract

We introduce CloudLight, a system for computing indirect lighting
in the Cloud to support real-time rendering for interactive 3D ap-
plications on a user’s local device. CloudLight maps the traditional
graphics pipeline onto a distributed system. That differs from a
single-machine renderer in three fundamental ways. First, the map-
ping introduces potential asymmetry between computational re-
sources available at the Cloud and local device sides of the pipeline.
Second, compared to a hardware memory bus, the network intro-
duces relatively large latency and low bandwidth between certain
pipeline stages. Third, for multi-user virtual environments, a Cloud
solution can amortize expensive global illumination costs across
users. Our new CloudLight framework explores tradeoffs in differ-
ent partitions of the global illumination workload between Cloud
and local devices, with an eye to how available network and com-
putational power influence design decisions and image quality. We
describe the tradeoffs and characteristics of mapping three known
lighting algorithms to our system and demonstrate scaling for up to
50 simultaneous CloudLight users.

1 Introduction

Image quality in video games has increased tremendously in re-
cent years, but dramatic changes in the computing ecosystem pose
challenges for continuing that rapid improvement. As client-server
computing migrates into a multitude of consumers’ everyday activ-
ities, it changes expectations for where and how people work and
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play. Today’s servers are increasingly abstracted into the Cloud1,
collections of servers with reliability similar to a utility [Armbrust
et al. 2010] that are similarly commoditized and abstracted, from
both the consumer’s and developer’s perspective. With clients in-
creasingly shifting to mobile phones and tablets, games and graph-
ics face a new challenge. Today’s most popular devices lack the
computational horsepower to render advanced effects such as global
illumination, yet consumers expect continually increasing graphics
quality. Further, mobile devices (including laptops) are thermally
limited and unlikely to reach the rendering performance of today’s
PCs by relying only on Moore’s Law [Chang et al. 2010]. Cloud
graphics offers a solution, replacing local client rendering with re-
mote rendering [Koller et al. 2004; Chen et al. 2011; Choy et al.
2012; Shi et al. 2012; Manzano et al. 2012]. Such systems have
many advantages beyond improved image quality (e.g., virtualiza-
tion; lower costs and piracy) and have started appearing commer-
cially [Lawton 2012]. Existing systems demonstrated the viability
of Cloud graphics and provided inspiration for our work.

While design of rendering pipelines for PCs and consoles is reason-
ably well understood, design of Cloud pipelines is in its infancy.
Nearly all prior works, including commercial systems, use a very
simple offload approach: synchronously map rendering for each
user’s frame to a single server. (Remote offline-rendering systems
like Autodesk360 [Dac 2013] also do this, but there latency is ir-
relevant so we we consider that beyond the scope of this real-time
focused paper.) Full-frame remote rendering is relatively easy to
deploy for legacy applications by simply running them within a vir-
tual computing environment and streaming their output as video.
However, it limits amortization and scalability, both critical require-
ments for economic Cloud deployments, and couples local device
rendering latency to network latency. An attractive alternative is to
make Cloud-aware pipelines that simultaneously compute results
for multiple users. That presents new opportunities to tradeoff la-

1We capitalize Cloud throughout the text to emphasize this definition.



tency, bandwidth, and image quality, as well as leveraging local
device computation to reduce perceived latency.

We introduce CloudLight, a new system for mapping complex in-
direct lighting algorithms onto existing and future Cloud architec-
tures. In this paper, we map three known lighting algorithms onto
a distributed infrastructure (shown in Figure 1) to demonstrate fea-
sibility of shared client-server rendering and explore its tradeoffs.
A key takeaway is that algorithms have varying bandwidth and la-
tency requirements that change the ideal location of network links,
which partition work between devices. We see this as a first step
into a whole new distributed ecosystem with broad opportunities
for new ideas and algorithms.

Distributing lighting computation over multiple machines is a nat-
ural extension of the parallelism already in multicore CPU ray trac-
ers and massively parallel GPU rasterizers. It is also one that has
been proposed in a few settings previously and deployed in some
specialized contexts like multi-node ray tracers and VR CAVEs.
While the idea is not novel, our investigation is an industry- and
systems-oriented approach to that could be deployed at consumer
scale on current and near-future hardware. The recent advances in
global illumination algorithms and new emergence of Cloud-based
graphics hardware, such as the , make this the right time to revisit.
This paper reports answers to the high-level questions that we our-
selves first asked around latency, scalability, and practicality. It then
covers some of the pragmatic details of our evaluation of alterna-
tive strategies and observations about how existing strategies must
be adapted for a distributed context.

Our contributions include developing and evaluating prototypes,
demonstrating feasibility of Cloud indirect lighting for game-scale
assets, and extending existing indirect light computation strate-
gies to a concrete distributed setting based around commercially-
deployed systems like OptiX, hardware video encoders, and GRID.
We also identify and empirically examine trade-offs in mapping
lighting algorithms to a Cloud pipeline. We explore different dis-
tributed architectures and algorithms, studying indirect lighting rep-
resentations requiring computation on client devices (irradiance
maps and photons) as well as optimizing communications between
GPUs inside a server node (for voxels). Finally, we demonstrate
scaling of CloudLight to 50 users per server node, allowing better
quality global illumination for similar per-user costs. Despite these
successes, our goal is not to present and advocate for a specific sys-
tem. Instead, we wish to document what we’ve done in order to
expose the underlying issues in the first, second, and third designs
that we think that any team might reasonably investigate as Cloud
lighting solutions. We believe that demand for such systems is in-
evitable and seek to address both “is this feasible?” questions as
well as the natural followup from a practical standpoint.

2 Background

Our work touches a vast body of prior work in graphics and com-
puter science. Thus our discussion here will be incomplete and we
restrict ourselves to the most fundamental information.

The Cloud abstracts a collection of servers combined with some
measure of reliability and transparency, allowing a view of compu-
tation much like a utility [Armbrust et al. 2010]. While this spins
the age-old concept of server infrastructure, the nuance is impor-
tant: it targets ordinary consumers, providing a user-friendly expe-
rience that “just works.” For games, the Cloud includes a heteroge-
neous set of computers, connected by fast interconnect, that offload
shared or overflow computations from user devices.

User devices include phones, tablets, consoles, and traditional
desktop and laptop PCs. These clients connect via relatively lim-

ited networks (in bandwidth and latency), compared to links in a
traditional graphics pipeline. While there is a continuum of user
device power, most devices fall into three broad categories: low-
power (e.g., phones and some tablets), medium-power (e.g., some
tablets, laptops, and some PCs), and high-power (e.g., gaming PCs).
While consumer preferences between these are unpredictable, we
see the categories as intrinsically stable as power largely follows
form factor and heat dissipation. Functionally, we assume low-
power devices can stream video; medium-power devices can do
basic rendering (e.g., z-buffer, direct light, texture mapping); and
high-power devices can add moderately sophisticated work beyond
basic graphics.

Computer networks have several well-studied characteristics that
affect Cloud rendering. Importantly, both bandwidth and latency
vary over time and geographical region. In many countries stream-
ing video services are quite popular, empirically demonstrating
sufficient bandwidth for at least moderate quality video. Net-
work and video streaming services co-evolved into a complex and
still-changing ecosystem [Rao et al. 2011]. Another widely used
and growing application, two-way voice and video communica-
tions [Karapantazis and Pavlidou 2009], requires low latency rather
than high bandwidth.

Cloud gaming systems already exist commercially. Existing sys-
tems just stream video to the client, and do not include indirect
lighting. These systems resemble the software architecture of our
voxel-based illumination algorithm in Section 3.2, albeit with lower
quality visuals. Massively multiplayer games often use lightweight
servers to moderate player interactions, requiring fairly low latency
for smooth game play, although required bandwidth is small [Suzn-
jevic et al. 2009]. Researchers have augmented video with extra
data to hide latency and showed this trade of bandwidth for reduced
latency practical in certain cases [Boukerche and Pazzi 2006; Shi
et al. 2012].

Remote rendering has been broadly adopted (e.g., [Brodlie et al.
2004; Koller et al. 2004]). These systems typically stream video
or progressive images, but a few send graphics commands [Paul
et al. 2008]. While sending graphics commands effectively places
a network between CPU and GPU, our system instead places net-
work links between algorithmic components. The large data sets
at servers used in scientific visualization applications have inspired
work where both the server and local machine do work [Engel et al.
2000; Luke and Hansen 2002; Tamm et al. 2012], and this work
shares high-level goals with our own but is very different in detail
due to the very different datasets rendering goals. Remote indus-
trial design systems compute indirect lighting, but as they focus on
accuracy (rather than interactivity) latency considerations are less
important [Denk 2011].

Parallel renderers explore similar issues to our Cloud pipeline.
Parallel systems distribute global illumination over machines, but
most emphasize utilization [Chalmers and Reinhard 2002], not la-
tency and amortization over users. Thus, the design space and bot-
tlenecks are sufficiently different that they do not extend well to
interactive Cloud rendering.

Perception research has examined indirect lighting, showing it
sometimes provides weak spatial and albedo estimation cues [Hu
et al. 2000; Sinha and Adelson 1993]. Little objective work ex-
plores whether indirect lighting improves subjective viewer experi-
ence [Thompson et al. 2011], though the continuing push for global
illumination in games and film suggests it is desirable. Because
its perceptual role in improving visual quality for games is poorly
understood, we focus on showing existing global illumination algo-
rithms map to the Cloud rather than formally investigating percep-
tual questions. Our video shows illumination under varying latency,



and readers can draw their own conclusions.

Indirect lighting can be computed many ways, usually involving
at least some ray tracing [Whitted 1980], particularly in batch ap-
plications [Dutre et al. 2003]. Ritschel et al.’s [2012] recent survey
explores various techniques applied in interactive settings; see sur-
veys by Dachsbacher et al.’s [2009; 2013] for general coverage of
indirect light computation. We use three different approaches to
cover a reasonable portion of the interactive global illumination de-
sign space and demonstrate a variety of algorithms can split work
between clients and servers.

We note two theses with related material. Klionsky [2011] created a
general distributed system and applied it to light field rendering and
fluid simulation. Mara [2011] created an early prototype irradiance
map and light probe remote rendering system that later led to the
full CloudLight system described in this paper.

3 System

We aim to provide interactive 3D graphics experiences that exceed
the abilities of a user’s local device and enable amortization of the
resulting rendering costs when scaling to many clients, e.g., in the
context of multiplayer games. In this paper, we demonstrate Cloud-
Light’s feasibility on existing networks and hardware, and explore
how the choice of global illumination algorithm affects system de-
sign and performance.

A conventional single-user interactive renderer computes and stores
indirect light into a view-independent data structure, which is
queried when rendering each viewpoint. The high cost of updat-
ing indirect light requires a powerful processor; even today, rela-
tively few applications compute dynamic global illumination. In
contrast, the cost of direct light is more modest. Desktops, laptops,
tablets, and phones can all render basic direct lighting for scenes
using well-known algorithms. With increasing consumer demand
for entertainment on low power devices, splitting computation for
these components between Cloud and user allows higher quality
rendering on a range of client devices.

Important questions we investigate include: Do global illumina-
tion algorithms map well to distributed computation? What client
bandwidth is needed to share Cloud-computed illumination? What
latency does splitting a rendering pipeline introduce? Can local and
global illumination be asynchronous without introducing objection-
able latency? How does Cloud lighting scale with number of users?
Overall, this provides a rich design space our system explores using
three separate lighting algorithms (see Figure 1).

3.1 Hardware Architecture and Scene Characteristics

With Cloud rendering in its infancy, server hardware and infrastruc-
ture may change dramatically in upcoming years. Hardware im-
poses design constraints, so we make some assumptions to provide
a concrete target. In particular, we assume servers contain multi-
ple GPUs connected through a fast bus (e.g., PCIe). Each server
has at least one high-end GPU with hardware-assisted H.264 video
encoding. We assume consumer devices have sufficient network
and compute resources to a least stream and decode a 1080p H.264
stream in realtime with less than 200ms of latency. While such net-
works are not available everywhere, similar bandwidth is already
required by existing systems (e.g., home video streaming) and such
latency is already feasible for many users. One variant of our sys-
tem explores how to take advantage of increased local computation
and network bandwidth.

We test our system on scenes that mimic asset type and complex-
ity found in modern games. Today’s game assets co-evolved with

existing hardware and lighting algorithms, so their authoring of-
ten does not highlight indirect lighting. However, we believe our
scenes provide a reasonable computational “stress test” and allow
sufficient comparison and extrapolation of performance on current
assets to demonstrate feasibility of Cloud rendering.

3.2 Indirect Lighting Strategies

Given the volume of literature on interactive global illumination
and the many ways to partition computation between Cloud and
local users, we chose to implement three algorithms with very dif-
ferent computation, memory, network, and reconstruction require-
ments to explore the vast design space (see Table 1). While these
techniques may not span the entire space (or include the “optimal”
approach), we chose them to provide some empirical insights into
advantages and challenges in the relatively uncharted territory of
interactive Cloud rendering. We believe that they do represent the
currently-dominant strategies for offline and near-realtime global
illumination–path, photon, and cone/beam tracing. They are thus
the strongest candidates for acceleration and deployment in a real-
time cloud assisted renderer, and their quality and robustness have
already been established well explored in the literature.

Voxels Irradiance maps Photons
Costs
User compute medium low high
Bandwidth high low medium
Server parallelism gather + scatter gather scatter
Features
Parameterization not needed needed not needed
Compression delta + wavelet video bit-packing

Table 1: Characteristics of our three indirect lighting algorithms.

This section provides a high level overview of the three algorithms
that we tested, with specific implementation details in Section 4.
Figure 1 shows the mapping of the algorithm pipelines onto Cloud,
network, and user resources. As data structure, indirect lighting
computation, and lighting reconstruction differ greatly between our
three algorithms, very different mappings to system resources are
most suitable. Note a few key points: for all three algorithms,
indirect lighting is computed in the Cloud; conceptually, all three
trivially allow amortization of indirect lighting over multiple users;
each has significantly different user-side reconstruction costs; and
network requirements vary in both bandwidth and latency. For our
purposes, we want to answer whether indirect lighting (in any or all
of our algorithms) fits well onto the Cloud, whether we can amor-
tize lighting over dozens of users, and whether asynchronous light-
ing computations present objectionable visual artifacts.

As part of CloudLight, we implemented the following three light-
ing algorithms: cone-traced sparse voxel global illumination, path-
traced irradiance maps, and real-time photon mapping.

Voxels represent indirect irradiance as a directionally varying, low-
dimensional quantity on a sparse 3D lattice [Crassin et al. 2011].
Reconstructing indirect light from voxels is relatively inexpensive,
though more expensive than from 2D textures. The large mem-
ory footprint of the voxel grid preventing transmission of voxels
directly to users. Instead, we reconstruct lighting on the Cloud
and stream fully-rendered frames to users. This approach’s multi-
resolution representation allows the use of lower resolutions for fast
objects or camera movements and when high quality solutions are
not yet available. With a world-space voxel structure, computation
can be precisely focused to compute indirect light only where visi-
ble, and multiple GPUs inside a server can easily exchange data to
collaborate. This is the only method that must render full frames



on a server to reduce bandwidth to the end user. It distributes the
rendering pipeline across three GPUs with two splits–one between
indirect and direct, and one between direct and display. It is the
first step from today’s currently-deployed full-frame streaming with
dedicated resources per user to a future in which computation is
amortized over multiple users on the server side.

Irradiance Maps represent indirect irradiance in texture light
maps [Mitchell et al. 2006]. Typically these textures are static, com-
puted offline during authoring. We gather indirect light at texels
interactively on the Cloud using ray tracing. Importantly, geometry
must be parameterized to allow a mapping of geometry to individ-
ual irradiance map texels. Although commonly done, producing a
parameterization is laborious and difficult. A client receiving irra-
diance maps must only decode transmitted H.264 data and combine
with locally-computed direct lighting, so relatively weak user hard-
ware suffices. As maps may be broadcast to multiple users, compu-
tation trivially amortizes. Incrementally adding multi-bounce light-
ing is straightforward by gathering from the prior frame’s irradiance
map. This strategy maps well to current game engines because it
minimizes required network bandwidth and changes to the under-
lying client-side renderer.

Photons represent indirect light as point sampled particles [Mara
et al. 2013]. As photons may have independent lifetimes, intelligent
management allows reuse between frames and multiple users. This
also allows parallelization over multiple cloud GPUs and the ability
to progressively update photons in batches for a more immediate re-
sponse to changing lighting. Client light reconstruction is relatively
expensive, requiring recent GPUs for interactivity. However, pho-
tons put few demands on scene authoring, requiring neither param-
eterization nor voxelization. Using photons offers a tradeoff requir-
ing higher user hardware computation in exchange for high image
quality and reduced authoring costs. This is our most aggressive
approach. It has the potential for the highest quality, especially for
glossy indirect reflections, but looks to a future generation of client-
side devices and network infrastructure for practical deployment.

We could of course render full full frames on the server using ir-
radiance maps or photons instead of voxels. We have in fact im-
plemented a fallback path for those strategies in which a sepa-
rate server process launches and renders full frames when a mo-
bile client connects to the server. However, for sufficiently power-
ful clients, those methods present a lower-bandwidth, lower-latency
solution if the client participates in rendering, so we do not report
further results on this path. The thrust of our analysis of the voxel
strategy is on distributing the indirect and direct light computation
between two server-side GPUs that do not share an address space
but do share a high-performance bus. Streaming of the final frames
to the client is identical to existing solutions and independent of
the indirect light strategy, so we give only cursory analysis of that
already-explored aspect of the design space.

3.3 System Design

We had to address a number of key design issues with CloudLight:
supporting relatively underpowered clients; asynchronously updat-
ing direct and indirect lighting; designing for unpredictable band-
width and latency; refining progressively and smoothly when full
updates are infeasible; and ease of incorporation into existing au-
thoring and rendering pipelines. None of these issues are new; Loos
et al. [2011] handle weaker clients, Martin and Einarsson [2010]
update light incrementally and asynchronously, progressive refine-
ment has been proposed frequently (e.g. [Cohen et al. 1988]), and
all network systems must handle unpredictable communications.

We do not argue for one ideal illumination strategy for CloudLight.
All three of our prototypes represent different points in the multi-

dimensional design space of our criteria. Sparse voxel global illu-
mination supports any client that decodes video and relies on client
bandwidths and latencies on par with currently popular network ser-
vices, but authoring pipelines must change to handle voxel-based
lighting, and it does not receive the benefits of decoupling indirect
illumination and user framerate. Irradiance maps support relatively
low-powered devices, can update indirect light asynchronously, use
bandwidth comparable to streaming video, and easily incorporate
into existing engines using light maps. However, progressive irra-
diance map updates are tricky and parameterizing complex scenes
is challenging. Photons refine lighting progressively and asyn-
chronously to easily handle dynamic scenes and are straightforward
to add to existing rendering systems; however, photons require a
capable client device and consume significantly higher bandwidth
than our other approaches.

4 Implementation

We implemented the three algorithms described in Section 3.2 us-
ing the pipeline structure from Figure 1. Each consists of two sep-
arate C++ programs (Cloud and user) connected via the network.
To make comparisons as meaningful as possible, all six programs
share a significant amount of infrastructure code, including model
management, networking, GPU and CPU timers, and OpenGL and
OptiX wrapper code.

4.1 Voxels

Our voxel global illumination approach builds on sparse-octree
global illumination [Crassin et al. 2011], and can be thought of as
a multi-resolution octree irradiance cache or a 3D light map. Us-
ing this approach avoids constructing surface parameterizations, a
key advantage. On the Cloud, indirect light is gathered to a direc-
tionally varying irradiance sample at every multi-resolution voxel.
To reconstruct indirect light, we trace cones through this voxel grid
(similar to a traditional photon map final gather) to generate view-
dependent indirect light for each client. This view-dependent re-
construction also occurs in the Cloud, though it uses a separate GPU
from the per-voxel sampling.

Our voxel approach follows these key steps:

1. Voxelize scene geometry (either offline or dynamically)
2. Inject light into and filter the sparse voxel grid
3. Trace cones through grid to propagate lighting
4. Use cone traced results to generate fully-illuminated frames
5. Encode each frame with H.264 and send to appropriate client
6. Decode H.264 on client and display the frame

Basic voxel lighting runs well on high-end PCs, so our efforts fo-
cused on mapping it to the Cloud. While view independent, the
light injection and propagation steps require substantial resources.
To ensure our computations amortize well over many clients, we
propagate light via cone tracing to a view independent, per-voxel
representation, rather than Crassin et al.’s [2011] per-pixel output.

After cone tracing, querying the resulting view-independent voxel
irradiance cache occurs quite efficiently. Unfortunately, shipping
a large voxel grid over the network for client reconstruction is in-
feasible. Instead we transfer the voxels to another Cloud GPU to
reconstruct, compress, and send fully rendered frames to clients.
Thus, our voxel algorithm uses one GPU (called the global illu-
mination GPU) to generate view-independent data plus a smaller
GPU (called the final frame GPU) to generate the view-dependent
frames we send to clients.



To utilize fast GPU-to-GPU transfers, our global illumination and
final frame GPUs reside in a single server. However, the signifi-
cant data size of a voxel representation still requires several other
strategies to compress data for efficient transfer:

• bricking voxels, with per-brick compaction;
• wavelet voxel encoding for finer octree levels;
• restricting GPU-to-GPU transfers to a minimal octree cut;
• asynchronous updates with DMA transfers between GPUs;
• progressive, frequency-dependent decompression.

Essentially, we speed transfers by reducing the amount and preci-
sion of voxel data, limiting transmissions to important voxels, and
using asynchronous communication. We speed reconstruction (and
further reduce bandwidth) by computing full resolution only in ar-
eas requiring high frequency detail.

On our design spectra from Section 3.3, voxels behave as follows:

• Client power. Requires only client H.264 decode.
• Asynchronous updates. Computations appear synchronous

to client, but occur asynchronously on two GPUs in the Cloud.
• Bandwidth and latency. Requires latency similar to VoIP

and bandwidth of video-streaming.
• Progressive refinement. Multi-resolution octree enables pro-

gressive, coarse-to-fine updates.
• Ease of use. Pipelines need updating to handle voxels.

4.2 Irradiance maps

Our irradiance map seamlessly fits into existing engines with di-
rectional light map illumination, such as Unreal Engine 3 and the
Source Engine. Existing systems typically use static, offline “pre-
baked” irradiance maps. We leave the local device renderer un-
modified but extend the system to stream dynamic textures for the
illumination data. This keeps the client simple, as the only new
logic for dynamic indirect light is a network decoder to interpret
incoming irradiance maps.

As long as the server outputs compressed irradiance maps with the
required performance, it can use any baking algorithm. We imple-
mented two irradiance map servers. One gathers irradiance naively
at each texel using an OptiX-based ray tracer [Parker et al. 2010].
The second, more sophisticated and efficient one first decomposes
the irradiance map into coarse basis functions, and only gathers illu-
mination once per basis. This approach requires an order of magni-
tude fewer rays for comparable performance, accelerating compu-
tation sufficiently to allow multiple updates of the entire irradiance
map per second.

In both cases, we compress irradiance maps using a hardware H.264
encoder prior to transmission and decompress it client-side with
an optimized CUDA decoder. We initially planned more sophisti-
cated compression to mitigate artifacts, as H.264 encoding was not
designed for the myriad discontinuities in irradiance maps. How-
ever, the masking effects of texturing and ambient occlusion on the
low-frequency indirect illumination sufficiently mitigates the visual
impact of compression artifacts, and the benefits of leveraging the
highly performance and power efficient H.264 encoder outweigh
the potential advantages of a custom irradiance map encoder.

Our irradiance map system follows these key steps:

1. (Offline) Generate global unique texture parameterization
2. (Offline) Cluster texels into basis functions
3. Gather indirect light at each basis function (or texel)
4. Reconstruct per-texel irradiance from basis functions
5. Encode irradiance maps to H.264; transmit to client

6. Decode on the client
7. Render direct light; use irradiance map for indirect light

Essentially, at every iteration we perform a texture-space deferred
shading pass over the irradiance map (using a texture space G-
buffer and current irradiance maps as input). We use OptiX to per-
form a gather of indirect light, either at every valid texel or once
per basis function. We use the rasterizer to offload computation
of direct light in texture space, improving performance. We tried
numerous other ideas to reduce server cost for irradiance map cre-
ation. Importantly, using clustered bases significantly reduces the
number of gather points. As a preprocess, we cluster mutually visi-
ble texels (e.g., not separated by walls) with similar normals. Each
basis has a radius of influence, and when gathering at basis func-
tions, we blend up to 8 bases to reconstruct per-texel irradiance.

Each irradiance map update gathers a single bounce of indirect
light. We achieve multi-bounce lighting by consulting the prior irra-
diance map when gathering subsequent irradiance maps. We sought
high memory coherency for rays traced in parallel by: reordering
hemispherical QMC samples into clusters of coherent rays; tracing
clustered rays in parallel (in a warp) rather than sequentially; and
avoiding complex materials during irradiance map creation.

To eliminate popping due to sudden illumination changes or un-
expected network latency, client-side temporal filtering can be
achieved using an exponentially weighted average over multiple ir-
radiance maps.

Irradiance maps lie as follows on our design spectra from Sec-
tion 3.3:

• Client power. Moderate power client needed, to render direct
light plus decoded H.264 irradiance map.

• Asynchronous updates. New irradiance maps computed
asynchronously, incorporated on client as they arrive.

• Bandwidth and latency. Consumes bandwidth equivalent to
video streaming. Latency tolerant with client-side filtering.

• Progressive refinement. We increase path length by one each
iteration by seeding with the current irradiance map. We could
(but currently do not) use hierarchical basis functions to in-
crease resolution with each iteration.

• Ease of use. Existing rendering pipelines use irradiance
maps.

4.3 Photons

We use a standard photon tracer [Jensen 2001] implemented via a
Cloud-based OptiX engine. We compact and compress the photons
for transmission to the clients, which then render indirect illumina-
tion from them via a screen-space scatter approach (e.g., Mara et
al. [2013]), rather than a traditional final gather. To produce timely
updates, we continually trace photons in small batches and trans-
mit them as soon as they are complete, rather than waiting for all
photons in the scene. This allows convergence in time, similar to
frameless rendering or real-time path tracing approaches. Because
indirect light often changes gradually (in world space), in many
cases the artifacts resulting from this are hard to perceive while the
short update time between a scene change and new illumination be-
ing sent to the client is always beneficial.

Our photon map implementation follows these key steps:

1. Trace photons using Cloud-based ray tracer;
2. Transfer a bit-packed encoding of photons to clients;
3. Expire old photon packets on client; replace with new ones;
4. Scatter photons into client view to accumulate indirect light;
5. Sum indirect light with locally-computed direct illumination.



A key feature of this pipeline is our photon batching. A global
parameter controls photon count per emitted watt of illumination,
which sets total photons per iteration. We group these into fixed-
sized batches, with all photons in each batch emitted from one light.
To ensure full GPU utilization and avoid noise for dim lights, we
add additional photons (and renormalize) so each light emits an in-
teger number of batches. Each photon stores direction, power, posi-
tion, radius, and normalization factors packed into a 20-byte struc-
ture. We defer normalization to the client to preserve precision; this
precision could be ignored to regain some network bandwidth.

Batching has many advantages. Common ray origins and direc-
tions dramatically improve memory coherence (and performance)
when traversing ray acceleration structures. Tracing and transmit-
ting small batches reduces latency between interaction and first vis-
ible change. Fixed batch sizes simplify memory allocations and
transfers at multiple stages in our pipeline. When lighting changes,
identifying stale photons is straightforward, as batches directly cor-
respond to specific lights; we can reshoot only photons whose cor-
responding light changed. For dynamic geometry, only photon
batches that interact with this geometry need updating.

Once photons reach the client we use an image-space splatting ap-
proach to gather indirect light, in particular the 2.5D bounds method
of Mara et al [2013]. This uses a deferred render pass, which ex-
pands photons to a polygonal approximation of their area of in-
fluence. A photon density estimation kernel runs over all covered
pixels, with results output to a low resolution additive accumula-
tion buffer. We apply a bilateral upsample to get a full-resolution
indirect illumination buffer. This approach was one of the fastest
approaches explored by Mara and was easily incorporated into our
renderer.

Given our design spectra from Section 3.3, photons fall as follows:
• Client power. Photon reconstruction requires powerful client.
• Asynchronous updates. Photons computed asynchronously;

incrementally incorporated client-side.
• Bandwidth and latency. High bandwidth, due to photon size.

Progressive nature provides good latency tolerance.
• Progressive refinement. Can update subset of photons, in-

cluding just those for dynamic lights or objects.
• Ease of use. Needs no surface paramterization, memory use

reasonable, and straightforward reconstruction.

5 Results

Our experiments address whether Cloud-based indirect lighting is
feasible in the current hardware ecosystem. Feasibility rests on
whether achievable bandwidth and latency allow practical indirect
lighting for remote users. We also sought to empirically explore
the algorithmic design space to better understand bandwidth and
latency tolerances for illumination.

We tested various scenes with complexity found in real games, as
well as the common Cornell Box and Sponza test scenes. We pur-
chased the “Old City” model from TurboSquid, “Dockside” comes
from Call of Duty: Black Ops II (by Treyarch, published 2012
by Activision), “Operation 925” comes from Battlefield 3: Close
Quarters (by DICE, published 2011 by EA), and “Ironworks” is a
re-textured scene from QuakeLive (by id Software in 2010). The
conditions under which we have permission to use Dockside and
Operation 925 prohibit us from showing them with full materials.

5.1 Network

We tested on wired and wireless networks, on continent-scale con-
nections from Santa Clara, CA to Salt Lake City, UT (1200 km) and

Salt Lake City, UT to Williamstown, MA (3600 km), and on town-
scale connections across the Williams College campus. Except at
extreme distances, latency is not primarily driven by physical dis-
tance, but by the number of network hops. That is because the
queuing and packet transmission times at routers are high relative
to the time taken for light to cover a hundred kilometers.

We consider the town or city-wide scale to be the most plausible
deployment scenarios. One could envision existing Internet access
and content providers extending their local server nodes with 3D
rendering capabilities in the same way that they already have ex-
tended those nodes to support media caching, digital goods stores,
video streaming services, and massive multiplayer games. Our
scalability results are reported for the college campus network be-
cause it provided a network under real-world load circumstances on
which we could physically manage 50 client machines.

Continent-scale links provide proof of robustness but no interesting
quantitative or qualitative results. There, latency was proportional
to traditional ping time and bandwidth simply varied with the qual-
ity of service purchased. Wireless clients increase variance of la-
tency substantially, but we did not observe them to shift the mean
latency significantly compared to the cost of tracing illumination on
the server. Our irradiance maps and photons strategies are specifi-
cally designed to be robust to both high and variable latency.

5.2 Latency

Figure 2 shows the test scenes as rendered by CloudLight. It is
well known that the underlying global illumination algorithms that
we built into the system produce pleasing static images. The qual-
itative research question is how the image quality is affected for
dynamic scenes in the presence of latency and compression within
the rendering pipeline. To address this, our video shows results for
the three system variants on real systems and networks. They also
shows sequences rendered with artificial, controlled latency in or-
der to explore the perceptual impact of latency for indirect light. We
consider these video results to be the our most compelling analysis
of latency in a cloud renderer and refer the reader to them–no per-
ceptual study or graph could help one to judge what is acceptable
latency as much as one’s own experience.

While perception of artifacts from latency and lossy compression
depends on context and user task, we sought to construct both typ-
ical and worst cases. In the worst cases, we rapidly change illumi-
nation with fast-moving light sources inside the scenes, including a
full daylight cycle in one minute, while experiencing high network
latency of up to one second. While direct and indirect light are no-
ticeably decoupled, at least for expert viewers, we believe even a
second of latency provides relatively compelling indirect lighting.
It is interesting to note that computationally hard cases, such full
global illumination as large scenes like Operation 925, are also the
ones for which we observe that humans have poor intuition for cor-
rect. Computationally trivial cases like the Cornell Box are ones
in which we have good intuition for the lighting result and notice
latency. So, the realistic use case of complex scenes happens to be
the one for which the primary limitation of the system–perceived
latency–is mitigated.

Table 2 reports quantitative behavior of our three system variants.
This table demonstrates the feasibility of Cloud-based indirect il-
lumination algorithms, even those with very different properties.
The subsections below delve into the individual algorithm results
in more detail. The irradiance map algorithm requires a quality
surface parameterization, especially for clustering texels into basis
functions. This is a hard problem that is a limitation of that ap-
proach, and for scenes marked “n/a,” we were unable to create a



Figure 2: Images of the scenes used for testing, as seen on the
client with real-time dynamic indirect light.
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Figure 3: Per-client GPU costs for up to 50 users with our voxel in-
direct lighting on Sponza. All clients use a single view-independent
voxel grid, but each receives a unique view-dependent rendering.
(Our other two strategies have fixed rendering cost, so are indepen-
dent of the number of clients.)

suitable parameterization within a reasonable timeframe even with
direct assistance and tools from game developers.

All our indirect lighting algorithms run in the Cloud on a GeForce
TITAN. The voxel algorithm streams video to the user and relies
on a secondary GPU to render view-dependent frames and per-
form H.264 encoding. Because this secondary GPU leverages di-
rect GPU-to-GPU transfer features of NVIDIA Quadro cards (to
quickly transfer voxel data), we use a Quadro K5000 as this sec-
ondary GPU. Timing numbers for client-side photon reconstruction
occurred on a GeForce 670.

5.3 Voxel Results

Table 2 shows voxel updates are quite efficient, but require sizable
memory and significant bandwidth when transferring data between
nodes. Using fast GPU-to-GPU transfers enables us to send even
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Figure 4: Bandwidth and latency measured at the server for irradi-
ance mapping with up to 50 client machines in the Ironworks scene.
Black: latency vs. number of clients. Green: Server’s bandwidth
vs. number of clients.

sizable voxel grids between GPUs within a single server. A sec-
ond final frame GPU turns view-independent voxel data into view-
dependent per-client frames, which undergo hardware H.264 en-
coding prior to streaming to clients.

Figure 3 shows per-client GPU costs for up to 50 unique users ren-
dering from a single, view-independent voxel grid. This shows
the common overhead becomes insignificant once there are many
clients. Our tests show even here, with our most expensive work-
load, each K5000 GPU can simultaneously serve 5 clients with a
consistent 30 frames per second (and 25 clients at 12 Hz). We do
not show a graph of bandwidth because it simply scales linearly
in the number of clients. Bandwidth varies highly based on com-
pression settings and scene content, so any bandwidth measurement
and claim would be highly subjective. However, to report at least
a bound on the useful range, we observed between 3 and 15 Mbps
per client across all settings and (dynamic) scenes.

5.4 Irradiance Map Results

The second block in Table 2 shows irradiance maps have low band-
width requirements, due to the H.264 encoding of our transferred
light maps. Many of our scenes have no timings because they do not
have suitable UV-parameterizations. This illustrates the main prob-
lem with irradiance maps: paramterizations are difficult to acquire
for complex scenes [Boulton 2013], particularly when adding the
requirement to construct basis functions representing illumination
over dozens or hundreds of nearby texels.

We tested irradiance map scaling for various numbers of unique
clients (see Figure 4). This requires sending a copy of the irradi-
ance maps to each user. The per-user latency is essentially constant
up to 50 users. As new users require no additional server compu-
tation, latency depends exclusively on network congestion. With
irradiance maps, we were unable to saturate our network even with
50 clients (all the computers at our disposal).

5.5 Photon Results

Photons do not require parameterizations, so (like voxels) we were
able to test on all scenes. Photons require more client-side horse-
power than our other approaches, as evident from the grey lines of
Table 2. Due to larger bandwidth requirements, photon mapping



Cornell box Sponza Ironworks Old city Dockside Operation 925
Polygon count 34 262,000 442,000 1,210,000 1,773,000 2,598,000

Voxels
Total indirect update (GI GPU) 19 ms 28 ms 28 ms 40 ms 45 ms 32 ms

Light injection 11 ms 9 ms 13 ms 20 ms 26 ms 19 ms
Clear 1 ms 3 ms 2 ms 3 ms 3 ms 2 ms
Gather 7 ms 15 ms 12 ms 16 ms 16 ms 12 ms

GI GPU voxel memory 0.13 GB 2.6 GB 2.2 GB 2.7 GB 2.0 GB 2.8 GB
Intra-server bandwidth (GPU-to-GPU) 2.8 Gbps 6.7 Gbps 4.5 Gbps 6.1 Gbps 3.7 Gbps 1.9 Gbps
Final frame time 5 ms 12 ms 11 ms 14 ms 16 ms 10 ms
H.264 encode (per client) 4.2 ms 4.2 ms 4.2 ms 4.2 ms 4.2 ms 4.2 ms
Local device bandwidth (mean) 3 Mbps 5 Mbps 6 Mbps 6 Mbps 6 Mbps 3 Mbps

Irradiance maps
Number of basis functions 50 39,000 6,300 n/a n/a n/a
Rays per update 26k 20.0M 1.6M n/a n/a n/a
Cloud update time 7.5 ms 214 ms 40 ms n/a n/a n/a
Irradiance map texels 1282 10242 10242 n/a n/a n/a
H.264 encode ≈0.5 ms 3 ms 3 ms n/a n/a n/a
Local device bandwidth 0.16 Mbps 1.5 Mbps 1.7 Mbps n/a n/a n/a
Local device indirect light size 768 kB 48 MB 48 MB n/a n/a n/a

Photons
Number of batches 1 13 7 9 8 9
Photons per batch 10,000 40,000 100,000 100,000 400,000 160,000
Memory footprint 67 kB 6.1MB 8.3MB 5.1MB 10.4MB 30.22 MB
Iteration interval (total) 6.1 ms 9.8 ms 31.8 ms 20 ms 32.9 ms 28.3 ms

Photon trace 5.4 ms 7.8 ms 26.8 ms 11.5 ms 28.6 ms 19.5 ms
Photon compaction 0.5 ms 0.9 ms 2.7 ms 2.4 ms 1.6 ms 2.0 ms
GPU to CPU to NIC transfers 0.2 ms 1.1 ms 2.3 ms 6.1 ms 2.7 ms 6.8

Local device bandwidth (mean) 16 Mbps 34 Mbps 38 Mbps 25 Mbps 34 Mbps 43Mbps
Stored photons on local device 3.4k 207k 416k 257k 528k 1511k
Local device indirect computation 8 ms 26 ms 30 ms 28 ms 28 ms 30.2 ms

Table 2: Measurements for all three algorithms with a GeForce TITAN cloud and GeForce 670 local device. Colors match Figure 1: cyan
cloud, orange network, gray local device.“B” = bytes, “b” = bits. Not shown: local device GPU H.264 decode takes about 1 ms at 1080p
but is impractical to measure directly.
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Figure 5: Scaling of photon mapping bandwidth and latency for up
to 50 client machines on Old City.

does not scale as well as irradiance mapping. Figure 5 shows good
scaling to around 30 users, after which bandwidth limits are reached
and latency starts increasing from increased network congestion.

Examining the split between Cloud and client photon costs in Ta-
ble 2, it may appear both could feasibly be performed client-side.
However, our Cloud GPU is around three times faster than clients
and allows amortizing photon emission across all users.

For our scenes, we tuned batch size to maximize transferred lighting
without delaying updates more than a frame over base network la-
tency. With increasing client connections, we reach maximal band-
with quite quickly; while we can easily afford emitting additional
photons on the server, this would increase bandwidth (and hence
latency) for every batch of photons sent to clients. This suggests
we could afford additional computation to select more intelligent
photons, e.g., using photon relaxation to compute better photons.
Alternatively, finding an optimal photon compression would reduce
per-photon bandwidth. This is a somewhat unique situation for in-
teractive global illumination techniques: having excess computa-
tion to spend on optimizing sampling.

6 Summary and Discussion

We demonstrated CloudLight, a framework for interactive Cloud-
based indirect lighting systems. Our main contribution explored



how to compute indirect lighting with a range of algorithms for
distributed architectures. We also demonstrated scalability up to
50 users on a real network, amortizing the indirect lighting across
users. We showed a variety of indirect lighting representations and
compression techniques, including separating view-independent
and view-dependent computations between GPUs and repurposing
H.264 for irradiance map compression. We found, empirically, that
only coarse synchronization between direct and indirect light is nec-
essary and even latencies from an aggressively distributed Cloud
architecture can be acceptable.

All of our systems amortize global illumination. Irradiance maps
and photons go a step farther and address the latency issue; they ren-
der direct illumination on local clients, which enables immediate re-
sponse to user input, irrespective of network conditions. Moreover,
because the indirect illumination is view-independent it is robust to
temporary network outages. In the worst case, the last known illu-
mination is reused until connectivity is restored, which is no worse
than the pre-baked illumination found in many game engines today.

The choice of global illumination algorithm has major implications
for target bandwidth and client devices. Our voxel approach allows
extreme amortization of resources and places almost no computa-
tional burden on client devices. However, voxels do not scale to
large scenes. We mitigate this limitation via a multiresolution ap-
proach, underestimating distant indirect illumination in the process.

Irradiance mapping requires the lowest bandwidth of our algo-
rithms, with latency lower than voxels due to utilization of client
computational resources. It also integrates easily into existing game
engines. Unfortunately, irradiance maps require a global geometric
parameterization. While decades of research have provided a mul-
titude of parameterization techniques, these do not address prob-
lems specific to global illumination: handling light leaking where
texels lie below walls or keeping world-space samples close in tex-
ture space for efficient clustering into basis functions. We see the
authoring burden of parameterization as one reason developers are
moving towards other techniques, e.g., light probes.

In comparison to irradiance maps, photons require significantly
more bandwidth and client computation; however, they eliminate
the need for a global parameterization and allow smaller, progres-
sive updates that enable fast reaction to significant scene changes.

6.1 Future Work

In the near future, thermal limits on mobile devices are unlikely
to be overcome. To continually improve visual quality at the rate
consumers have come to expect, the only solution may be to move
some computation to the Cloud.

A wealth of future work suggests itself, and while we answered
many initial questions with our prototype CloudLight system, we
raised many more. Global illumination is increasingly being used
in games, but psychologists have done few experiments involv-
ing indirect light. A better perceptual model could make indirect
light even more latency tolerant. Our systems rely on a central-
ized server, yet many distributed networks use peer-to-peer com-
munication. Is there an efficient way to compute indirect lighting
via peer-to-peer systems? Another question is whether latency can
be managed using client postprocessing, for instance using image
warping on video streams with both image and depth.
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