
i
i

“jgt” — 2011/9/2 — 11:17 — page 1 — #1 i
i

i
i

i
i

Vol. [VOL], No. [ISS]: 1–9

Efficient Triangle and Quadrilateral
Clipping within Shaders

M. McGuire
NVIDIA and Williams College

Abstract. Clipping a triangle or a convex quadrilateral to a plane is a common

operation in computer graphics. This clipping is implemented by fixed-function

units within the graphics pipeline under most rasterization APIs. It is increasingly

interesting to perform clipping in programmable stages as well. For example, to clip

bounding volumes generated in the Geometry unit to the near plane, or to clip an

area light source to the tangent plane of a surface in a Pixel unit. While clipping

a convex polygon is algorithmically trivial, doing so efficiently on vector architec-

tures like GPUs can be tricky. This article presents an efficient implementation of

Sutherland-Hodgman clipping for vector processors. It has high branch coherence,

uses only register storage (i.e., it does not require a move-relative memory opera-

tion), leverages both data and instruction parallelism, and has a peak register count

of only two 4-vectors (7 scalars). I found it to be about five times faster than direct

Sutherland-Hodgman and yield a 45% increase in net throughput when applied in

the algorithm from a previous publication on two different GPU architectures. The

principles of optimization presented for this class of parallel algorithm extend to

other algorithms and architectures.

The result of clipping a primitive by a plane is the intersection of the prim-
itive and the positive half-space bounded by the plane. If the input primitive
is a convex polygon with k vertices, then result is expressible as a convex poly-
gon with k + 1 vertices, assuming we allow a zero-area polygon to represent
the empty intersection and allow the result to contain degenerate vertices.

Clipping arises frequently in computer graphics. For example, one often
clips 3D polygons to the near plane so that their 2D projection is contin-
uous and easy to rasterize or bound. An increasing number of algorithms

© A K Peters, Ltd.

1 1086-7651/06 $0.50 per page

i
i

“jgt” — 2011/9/2 — 11:17 — page 2 — #2 i
i

i
i

i
i

2 journal of graphics tools

inspired by Crow’s Shadow Volumes render bounding geometry to conserva-
tively identify screen-space points that are the projection of 3D points within
the bounding volume. In addition to shadows, this been applied to bounding
volumes surrounding the effective area of a light source in deferred lighting, a
reconstruction kernel in image space photon mapping, the defocussed/motion
blurred occlusion of a primitive for stochastic rasterization, and the ambi-
ent occlusion of a primitive in ambient occlusion volumes (AOV). There are
many cases where the polygons on these bounding volumes need to be clipped.
These include subsequent projection, to prevent interpenetration, and to build
a data structure [Gruenschloss et al. 11]. That clipping typically occurs at the
geometry or pixel stage of the graphics pipeline, which may be implemented
on either a CPU or GPU. I first encountered the problem of efficient software
clipping inside the pipeline while implementing AOV [McGuire 10], which re-
quires efficiently clipping a triangle to the tangent plane to a visible point
on a surface from within a pixel shader. Hoberock and Jia were the first to
identify the algorithmic necessity of clipping at the pixel stage for this class of
algorithm [Hoberock and Jia 07]. They did not publish an efficient solution,
although they may have been aware of one.

1. Serial vs. Parallel Clipping

One approach to clipping is to iterate through the edges of the input poly-
gon. Whenever an edge crosses the clipping plane, solve for the intersec-
tion and move all subsequent vertices to that location until encountering an
edge that crosses the plane again. Insert a vertex at that second intersection
and then (for convex input) retain all subsequent vertices, which must be
in the non-negative half-space defined by the plane. This is the Sutherland-
Hodgman polygon-plane clipping step [Sutherland and Hodgman 74] for which
the straightforward implementation is often the best on a serial processor. A
straightforward triangle implementation in the OpenGL Shading Language
(GLSL) appears in listing 1. The epsilon values are conservative and relative
to my scene scale in which triangles have minimum edge lengths of about
0.0001 units. I arrived at them by manual binary search.

There are several limitations of parallel architectures that make direct im-
plementation of Sutherland-Hodgman inefficient. The first is that on a data-
parallel processor (such as the NVIDIA GeForce 580) in which many triangles
are clipped simultaneously, different triangles may follow different branches
of the algorithm. This eliminates the data parallelism because the proces-
sor must evaluate both sides of each branch. The second problem is that a
näıve serial clipper is expressed in terms of mostly scalar operations, which ig-
nores the capabilities of processors that support instruction parallelism (such
as the Intel Core i7 or ATI Radeon HD 5800) through either intrinsics or

i
i

“jgt” — 2011/9/2 — 11:17 — page 3 — #3 i
i

i
i

i
i

[McGuire]: [TITLE] 3

const float clipEpsilon = 0.00001 , clipEpsilon2 = 0.01;

// Compute the point where AB intersects the plane
// with normal n through the origin.
vec3 intersect(vec3 A, float Adist , vec3 B, float Bdist) {

return mix(A, B, abs(Adist) / (abs(Adist) + abs(Bdist)));
}

int sutherlandHodgmanClip3(const in vec3 n, in out vec3 v0 ,
in out vec3 v1, in out vec3 v2, out vec3 v3) {

// Copy the source data (add an extra vertex to avoid
// paying for a mod at each element)
vec3 src [4]; src [0]=v2; src [1]=v0; src [2]=v1; src [3]=v2;
vec3 dstVertex [4];
int numDst = 0;

// For each edge
for (int i = 0; i < 3; ++i) {

vec3 A = src[i], B = src[i + 1];
float Adist = dot(A, n), Bdist = dot(B, n);

if (Adist >= clipEpsilon2) {
if (Bdist >= clipEpsilon2) {

// Both are inside , so emit B only
dst[numDst ++] = B;

} else {
// Exiting: emit the intersection only
dst[numDst ++] = intersect(A, Adist , B, Bdist);

}
} else if (Bdist >= clipEpsilon2) {

// Entering: emit both the intersection and B
dst[numDst ++] = intersect(A, Adist , B, Bdist);
dst[numDst ++] = B;

}
}

// Put the data back into the variables used as input
v0 = dst [0]; v1 = dst [1]; v2 = dst [2]; v3 = dst [3];
return numDst;

}

Listing 1. A straightforward, but inefficient, implementation of Sutherland-
Hodgman triangle clipping.

a vectorizing compiler. The third problem is that variable indexing within
an array (i.e., a move-relative instruction) is not supported by pure-register
architectures. Those must interpret an assignment such as “x[i] = y” into
“if (i == 0) x = y0; else if (i == 1) x1 = y; else if (i == 2) ...”, which
is both slow and exacerbates the branching problem. The problems with vari-
able indexing hold even on relatively powerful GPUs and CPUs, because few

i
i

“jgt” — 2011/9/2 — 11:17 — page 4 — #4 i
i

i
i

i
i

4 journal of graphics tools

v0 v1

v2

v′2 v3

v0

v1

v2

v′1

v′2

Figure 1. Left: Case 3 is a triangle that produces quadrilateral (v0, v1, v
′
2, v3) after

clipping. Right: Case 4 is a triangle that produces triangle (v0, v
′
1, v

′
2) after clipping.

SIMD architectures support variable indexing of elements stored inside a vec-
tor register. Finally, it is important to minimize the peak register count in any
GPU program because GPUs allocate the number of simultaneous threads by
dividing the total register bank size by the number of registers per thread.

2. Triangle-Plane Clipping

The clip3 function in Listing 2 computes the intersection of triangle (v0, v1, v2)
with the half-space (x, y, z) ·n > 0. The result is a convex polygon whose ver-
tices are given by variables v0, v1, v2, v3. The function returns the number
of vertices, which is always 0, 3, or 4. For the convenience of the caller, it
guarantees that the resulting vertices may always be considered to form a
quadrilateral, which may necessarily have zero area or a degenerate vertex.
To generalize to a plane at an arbitrary offset, subtract the same vector from
all triangle vertices.

The function first eliminates trivial cases: case 1, where the triangle is en-
tirely in the negative half-space of the plane and is culled, and case 2, where
the triangle is entirely in the positive half-space. These tests are performed us-
ing vector operations across all vertices simultaneously. Rather than directly
comparing to zero, these tests use small values so that they are conservative.
I list the values that I used for the AOV project across a variety of scene
scales. For that algorithm, it is important to never cull a triangle that might
slightly overlap the plane than it is to exactly compute the area of a triangle
that is slightly clipped, so case 1 is more conservative.

The function then reduces all remaining possibilities to the two cases shown
in Figure 1 by cycling vertices until v0 holds the counter-clockwise-most ver-
tex above the plane. As previously motivated, cycling is more efficient than
variable indexing on many architectures and can also be performed on very
wide (e.g., 16-element) vector registers that don’t support variable element in-
dexing. The final statements that actually perform the clipping are arranged
so that common operations are extracted and all of the computational work
is linear interpolation of vectors that is supported by intrinsics and fused
multiply-add instructions.

i
i

“jgt” — 2011/9/2 — 11:17 — page 5 — #5 i
i

i
i

i
i

[McGuire]: [TITLE] 5

int clip3(const in vec3 n, in out vec3 v0 ,
in out vec3 v1, in out vec3 v2, out vec3 v3) {

// Distances to the plane (this is an array parallel
// to v[], stored as a vec3)
vec3 dist = vec3(dot(v0, n), dot(v1, n), dot(v2, n));

const float clipEpsilon = 0.00001 , clipEpsilon2 = 0.01;
if (! any(greaterThanEqual(dist , vec3(clipEpsilon2))))

// Case 1 (all clipped)
return 0;

if (all(greaterThanEqual(dist , vec3(-clipEpsilon)))) {
// Case 2 (none clipped)
v3 = v0;
return 3;

}

// There are either 1 or 2 vertices above the clipping plane.
bvec3 above = greaterThanEqual(dist , vec3 (0.0));
bool nextIsAbove;

// Find the CCW -most vertex above the plane.
if (above [1] && ! above [0]) {

// Cycle once CCW. Use v3 as a temp
nextIsAbove = above [2];
v3 = v0; v0 = v1; v1 = v2; v2 = v3;
dist = dist.yzx;

} else if (above [2] && ! above [1]) {
// Cycle once CW. Use v3 as a temp.
nextIsAbove = above [0];
v3 = v2; v2 = v1; v1 = v0; v0 = v3;
dist = dist.zxy;

} else nextIsAbove = above [1];

// We always need to clip v2-v0.
v3 = mix(v0, v2, dist [0] / (dist [0] - dist [2]));

if (nextIsAbove) {
// Case 3
v2 = mix(v1, v2, dist [1] / (dist [1] - dist [2]));
return 4;

} else {
// Case 4
v1 = mix(v0, v1, dist [0] / (dist [0] - dist [1]));
v2 = v3; v3 = v0;
return 3;

}
}

Listing 2. An efficient triangle clipping implementation.

i
i

“jgt” — 2011/9/2 — 11:17 — page 6 — #6 i
i

i
i

i
i

6 journal of graphics tools

3. Quadrilateral-Plane Clipping

Quadrilateral-plane clipping is similar

Figure 2. Screenshot of the trian-
gle strip resulting from a quadrilat-
eral clipped to a plane in a geometry
shader.

to triangle-plane clipping. There are still
only three cases needed for handling the
vertex cycling, however there are three
ways that the cycled quadrilateral can then
intersect a plane. See the web site for the
code and diagrams for this case.

The accompanying demonstration pro-
gram shown in Figure 2 clips a triangle
or quadrilateral to a plane at the geome-
try stage and outputs the resulting poly-
gon in triangle strip order. The GLSL
source code from that example is not re-
stricted to the geometry stage–it can be
included without modification anywhere
in the pipeline.

4. Experimental Analysis

I measured the performance of clipping in two ways. For the first experiment
EX1, I clipped each triangle to a plane at the geometry stage using the demon-
stration program for this paper. That experiment provides some measure of
the algorithm’s performance in isolation. For the second experiment EX2, I
integrated the clipping algorithm into AOV. This gives a practical measure of
the impact of these optimizations within the context of a significant shading
program. That is important because the register count, instruction count,
and cache effects of a routine on the surrounding code can dominate its raw
processing time. The source code for AOV is available from that paper’s
website.

There are no public tools for directly measuring the time consumed by a
single routine invoked within a GPU shading program. Even if there were, it
would not be useful. Recall that tens of thousands of instances will be oper-
ating in parallel, arbitrarily grouped into vector units. The time for a single
thread is meaningless, especially because it may be stalled by its neighbors.
Furthermore, the impact on the surrounding code would not be represented
in the time for the routine. To produce a meaningful performance estimate,
I therefore ran each experiment under three implementations: a Null oper-
ation that culls the entire triangle if it is beyond the plane and passes it
through otherwise, the Direct S-H (Sutherland-Hodgman) implementation in
listing 1, and the new Optimized implementation in listing 2. The null oper-
ation allowed me to estimate the constant overhead of the graphics pipeline
independent of any clipping. It is an imperfect baseline because by not actu-

i
i

“jgt” — 2011/9/2 — 11:17 — page 7 — #7 i
i

i
i

i
i

[McGuire]: [TITLE] 7

ally clipping except in trivial cases it changes the behavior of the downstream
algorithm. For example, even a slow clipping algorithm is better than none
at all if there are many long triangles spanning the clip plane and the cost of
rendering unclipped geometry is high.

I used three publicly available data sets, shown in figure 3. The Buddha is
from the Standford 3D Scanning Repository, Sibenik is by Marco Dabrovic,
and Sponza is by Frank Meinl at Crytek. Many slightly-different versions
of these models exist; mine are available from the McGuire Graphics Data
archive at http://graphics.cs.williams.edu/data in OBJ format. In the single-
plane test EX1, I rendered each scene ten times per frame to reduce the per-
frame variance. The AOV algorithm in EX2 processes ten output triangles
per scene triangle, so all tests clip ten times the scene triangle count. I ran
all experiments on two graphics cards under Windows 7 on NVIDIA driver
version 8.17.12.7533.

Figure 3. Buddha, Sibenik, and Sponza test scenes rendered by the test framework.

Table 1 shows the result of these experiments. The times are in milliseconds
for the entire rendering pass as reported by glTimerQuery, averaged over 100
frames. The throughput of a clipping algorithm is the number input triangles
processed per second, i.e., triangles / time. I estimate the time for a clipping
algorithm as the difference of the full pipeline running time using it and using
the Null operation running time, and then report the ratio of Optimized
throughput to Direct S-H throughput as the clipping throughput increase.
The average speedup was about 5×, although the flaws in this measurement
system are evident from the table. The metric varies highly and breaks down
for Sibenik and Buddha under the simple geometry shader because that is
the case where Null clipping forces the downstream pixel shading to cost
more than clipping.

The Net Throughput Increase is simply the ratio of the Direct S-H run time
to the Optimized run time. This measures how fast the entire rendering op-
eration ran, including many steps that have nothing to do with clipping. It
is thus limited by Amdahl’s Law: optimizing clipping can’t possibly decrease
run time by more than the time consumed in clipping. But this provides the
answer to a practitioner’s most common question: how much faster will this
implementation make my program? In the context of the trivial clipper in

i
i

“jgt” — 2011/9/2 — 11:17 — page 8 — #8 i
i

i
i

i
i

8 journal of graphics tools

Scene Sibenik x 10 Sponza x 10 Buddha x 10
Triangles Clipped 750 k 2.6 M 10 M

GPU Algorithm
GeForce GTX 280 Null 0.80 ms 4.90 ms 12.55 ms

Direct S-H 1.00 ms 5.30 ms 14.20 ms
Optimized 0.95 ms 5.00 ms 12.60 ms

Clipping Throughput Increase 1.33 x 4.00 x 33.00 x
Net Throughput Increase 1.05 x 1.06 x 1.13 x

GeForce 580 Null 4.70 ms 12.05 ms 42.60 ms
Direct S-H 3.20 ms 13.75 ms 53.20 ms
Optimized 3.00 ms 12.20 ms 41.95 ms

Clipping Throughput Increase N/A 11.33 x N/A
Net Throughput Increase 1.07 x 1.13 x 1.27 x

Scene Sibenik Sponza Buddha
Triangles Clipped 750 k 2.6 M 10 M

GPU Algorithm
GeForce GTX 280 Null 14.30 ms 44.90 ms 179.60 ms

Direct S-H 24.30 ms 65.75 ms 185.50 ms
Optimized 19.65 ms 51.35 ms 185.40 ms

Clipping Throughput Increase 1.87 x 3.23 x 1.02 x
Net Throughput Increase 1.24 x 1.28 x 1.00 x

GeForce 580 Null 38.85 ms 125.95 ms 415.45 ms
Direct S-H 101.30 ms 248.15 ms 505.00 ms
Optimized 46.40 ms 140.20 ms 417.85 ms

Clipping Throughput Increase 8.27 x 8.58 x 37.31 x
Net Throughput Increase 2.18 x 1.77 x 1.21 x

EX2: Ambient Occlusion Volumes

EX1: Geometry Shader Clipping

Table 1. Peformance analysis. EX1 measures raw clipping, EX2 is in the context
of a practical rendering algorithm.

EX1, the answer is that throughput will increase by about 10%. In the more
representative test of EX2, the net rendering throughput increases about 45%
across all trials. These results give a sense that performance can vary consid-
erably. Keep in mind that the precision is fairly loose on these conclusions
because clipping is so dependent on the scene and the surrounding rendering
algorithm. The most useful test is the one that you run yourself with the
clip3 and clip4 routines provided on the web page for this article.

i
i

“jgt” — 2011/9/2 — 11:17 — page 9 — #9 i
i

i
i

i
i

[McGuire]: [TITLE] 9

References

[Gruenschloss et al. 11] Leonhard Gruenschloss, Martin Stich, Sehera Nawaz,
and Alexander Keller. “MSBVH: An Efficient Acceleration Data Struc-
ture for Ray Traced Motion Blur.” In Proceedings of the Conference
on High Performance Graphics, HPG ’11. New York, NY: ACM, 2011.
Available online (http://gruenschloss.org/msbvh/msbvh.pdf).

[Hoberock and Jia 07] Jared Hoberock and Yuntao Jia. High-Quality Ambient
Occlusion, Chapter 12. Addison-Wesley Professional, 2007.

[McGuire 10] M. McGuire. “Ambient occlusion volumes.” In Proceedings of the
Conference on High Performance Graphics, HPG ’10, pp. 47–56. Aire-la-
Ville, Switzerland, Switzerland: Eurographics Association, 2010. Avail-
able online (http://portal.acm.org/citation.cfm?id=1921479.1921488).

[Sutherland and Hodgman 74] Ivan E. Sutherland and Gary W. Hodgman.
“Reentrant polygon clipping.” Communications of the ACM 17 (1974),
32–42. Available online (http://doi.acm.org/10.1145/360767.360802).

Web Information:

http://graphics.cs.williams.edu

Morgan McGuire, Williams College and NVIDIA Research, 47 Lab Campus Drive,
Williamstown, MA 01267
(morgan@cs.williams.edu)

Received [DATE]; accepted [DATE].

