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I’ll begin with an example of coding a real procedural content generator in 2D from 
scratch, before circling back to talk about the why, what, and how of “procgen” at a 
high level.

From there we’ll look at ray tracing and implicit surfaces and end up by creating a 3D 
model of a cute little planet.

At the end you’ll have resources and ideas to start your own experiments in this 
space.
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CREATING A UNIVERSE FROM RULES

A lot of graphics content development is done by artists, programmers, and writers 
placing each piece of their virtual universe and painting, animating, scripting, etc. it 
by hand.

The alternative is to not create anything except the laws of physics for your universe, 
and then letting the laws and some initial conditions create all of the richness. That’s 
procedural generation.

Watch me create such a universe right now:
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(0, 0)

(1, 1)

In the beginning, we have formless darkness. That’s how every graphics program 
starts, with this black screen. 

In my coordinate system, the origin is the lower-left and the upper right corner is (1, 
1)
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void mainImage(out Color color, in Point coord) { 
float x = pixel.x / iResolution.x;
float y = pixel.y / iResolution.y;
color = Color(0.0);

}

Here’s the code for a GPU pixel program that draws the black screen. If you’re not 
used to writing graphics code, then I just have to tell you a few simple things to 
understand this:

- “float” is a 32-bit real number. As in, a value with a decimal point.
- “Color” has red, green, and fields
- “Point” is a 2D point class with X and Y fields
- X and Y FOR loops run this code at every pixel to produce an image. Those are 
implicit and handled by the basic full-screen shader setup.

This program creates a universe. It is all mine. But I’ll share it with you.

Unfortunately, it is really, really boring. 
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void getSkyColor(float x, float y, inout Color color) {
float h = max(0.0, 1.4 - y - pow(abs(x - 0.5), 3.0));
color.r = pow(h, 3.0);
color.g = pow(h, 7.0);
color.b = 0.2 + pow(max(0.0, h - 0.1), 10.0);

}

void mainImage(out Color color, in Point coord) { 
…
getSkyColor(x, y, color);

}

Here’s some code to compute a gradient color. Don’t worry about exactly how it 
works. I basically fiddled around making the red, green, and blue fields decrease with 
the Y coordinate value until it looked pretty. 

I’ll run it. Let there be light…
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void getSkyColor(float x, float y, inout Color color) {
float h = max(0.0, 1.4 - y - pow(abs(x - 0.5), 3.0));
color.r = pow(h, 3.0);
color.g = pow(h, 7.0);
color.b = 0.2 + pow(max(0.0, h - 0.1), 10.0);

}

void mainImage(out Color color, in Point coord) { 
…
getSkyColor(x, y, color);

}

Yeah! Now we have some computer graphics. Our universe has a rule for how bright 
every point is. 

It is pretty. But still kind of boring. So, let’s divide the earth from the sky…
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float terrain(float x) {
return 0.45;

}

void mainImage(out vec4 color, in Point coord) { 
…
if (y < terrain(x)) { color = Color(0.0); }

}

What I’ll do is say that there is a line of terrain at y=0.45, just a little under halfway up 
the screen.
Everything below the terrain turns black, and the rest has the pretty sky gradient.
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float terrain(float x) {
return 0.45;

}

void mainImage(out vec4 color, in Point coord) { 
…
if (y < terrain(x)) { color = Color(0.0); }

}

Now we have a silhouette of the terrain. Which is a flat line, but that’s a start.
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float noise(float x) {
float i = floor(x), f = fract(x);
float u = 0.5;    
return 2.0 * mix(hash(i), hash(i + 1.0), u) - 1.0;

}

float terrain(float x) {
return noise(x) * 1.2 + 0.36;

}

I’m going to change the elevation by just computing a hash function on the horizontal 
position so that there is variation.
A hash function just turns each X value into an effectively random Y value that will be 
the height of the terrain, except that it is stable: if you give it the same input, then 
you get the same output.

So that this doesn’t zig and zag at each pixel like crazy, I’ll change the value in big 
horizontal blocks of X. I can do this by using the FLOOR function to round down the x 
position before I take the hash.

There’s some scaling and offset in the terrain() function to keep the line from going 
offscreen. Here’s what we get:
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float noise(float x) {
float i = floor(x), f = fract(x);
float u = 0.5;    
return 2.0 * mix(hash(i), hash(i + 1.0), u) - 1.0;

}

float terrain(float x) {
return noise(x) * 1.2 + 0.36;

}

Now there is variation.  Well, since I rounded off the horizontal value to the nearest 
integer and the entire screen just goes from 0 to 1 horizontally, there is only one 
transition.

We’ve come a long way. But this is where the fun really starts.
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float noise(float x) {
float i = floor(x), f = fract(x);
float u = f;    
return 2.0 * mix(hash(i), hash(I + 1.0), u) - 1.0;

}

This doesn’t look very natural. It is maybe a bad approximation of a city. Let’s smooth 
out the jump in the elevation by using a linear interpolation between two hash values 
to produce a hill instead of a cityscape.
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float noise(float x) {
float i = floor(x), f = fract(x);
float u = f;    
return 2.0 * mix(hash(i), hash(I + 1.0), u) - 1.0;

}

12



float noise(float x) {
float i = floor(x), f = fract(x);
float u = f * f * (3.0 - 2.0 * f);
return 2.0 * mix(hash(i), hash(I + 1.0), u) - 1.0;

}

This linear terrain looks very much like low-polygon computer graphics. You can see 
the sharp corner and unnaturally straight line. 
So, instead of linear, let’s make it a 3rd order curve…
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float noise(float x) {
float i = floor(x), f = fract(x);
float u = f * f * (3.0 - 2.0 * f);
return 2.0 * mix(hash(i), hash(I + 1.0), u) - 1.0;

}

That is much more natural! A gently sloping hill.
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float terrain(float x) {
float y = 0.0;
for (int octave = 0; octave < 5; ++octave) {

float k = pow(2.0, float(octave));
y += noise(x * k) / k;

}
…

Now, let’s not only use the noise function, but instead use the sum of five noise 
functions that have exponentially decreasing period and amplitude, like octave 
harmonics in music.
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float terrain(float x) {
float y = 0.0;
for (int octave = 0; octave < 5; ++octave) {

float k = pow(2.0, float(octave));
y += noise(x * k) / k;

}
…

Much more detail. We are really getting somewhere.
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float terrain(float x) {
float y = 0.0;
for (int octave = 0; octave < 10; ++octave) {

float k = pow(2.0, float(octave));
y += noise(x * k) / k;

}
…

And if we increase the number of octaves some more…
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float terrain(float x) {
float y = 0.0;
for (int octave = 0; octave < 10; ++octave) {

float k = pow(2.0, float(octave));
y += noise(x * k) / k;

}
…

Now there is a lot of detail. This looks like a hill or mountain range at sunset.
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void mainImage(out vec4 color, in Point coord) { 
…
float h = max(water(x), terrain(x));
if (y < h) { color.rgb = Color(0, 0, 0); }

}

Let’s go back to the main function. If instead of treating the silhouette line as the 
terrain height, I instead make it whichever is larger:  some sine waves or that terrain 
height…
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void mainImage(out vec4 color, in Point coord) { 
…
float h = max(water(x), terrain(x));
if (y < h) { color.rgb = Color(0, 0, 0); }

}

Then I get animated ocean waves rolling in to the shore.
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void mainImage(out vec4 color, in Point coord) { 
…
float h = max(water(x), terrain(x));
h += tree(x, h);
if (y < h) …

}

And if I add this line of code adjusting the silhouette line again, then the terrain rises 
up by another noise function in some sharp peaks…
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void mainImage(out vec4 color, in Point coord) { 
…
float h = max(water(x), terrain(x));
h += tree(x, h);
if (y < h) …

}

And we get trees!
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void mainImage(out vec4 color, in Point coord) { 
…
float shift = 0.09 * iTime + 0.2;
x += shift;
…

}

Now, here’s the real payoff. If I just start scrolling the viewpoint by making the 
horizontal coordinate increase with time, we can travel around and view this world 
that we’ve built. And discover new things in it, because it is only bounded by 
numerical precision…and we’ve never seen anything except the one starting location.

Think about this for a moment. I did NOT create the specific islands, ocean, and trees. 
I created the rules of the universe, and those rules created the scene. 

In the words of my favorite conceptual artist, Sol Lewitt, “The idea becomes the 
machine that makes the art”.
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https://www.shadertoy.com/view/WsdXWr

“The idea becomes the machine that makes the art.”
- Sol Lewitt, 1967

All of my code for this little demo is at that URL, and you can edit it and run it yourself 
in a web browser.
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PROCEDURAL WORLDS

You just saw procedural content.

Now I’ll take a step back and talk about the big ideas of procedural content 
generation in games to generalize from this example.
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No Man’s Sky (Hello Games)Minecraft RTX (Microsoft)

Spelunky (Mossmouth) Sid Meier’s Civilization VI (Firaxis Games and Aspyr)

This is the kind of result we want to achieve. Rich content with unlimited variations 
and scope created automatically by code. There’s also varying amounts of manual 
artwork injected as primitives into these systems, but for the purpose of creating the 
“world” or the “level”/”map”, that’s all coming from the code without anyone 
touching each forest or planet.

I’m pointing out these games specifically because you’re probably familiar with them 
and they’re all similar to our goal today: creating a procedural LANDSCAPE.

Akalabeth: World of Doom (1979) was probably of the first to create most aspects of 
the world from a single random number seed; Rogue was developed 
contemporaneously and similarly relied on procgen, and led to the “Roguelike” genre.
The modern version of those is Dwarf Fortress, which is THE most aggressive and 
deepest procgen/world simulator today.
But you’ll find procedural generation in lots of indie titles, such as 20XX to Terraria.

Because of the rising expectations of players for both fine scale detail and giant 
worlds, we’re starting to see procedural content generation go mainstream for all 
aspects of games: modeling, texture, geometry, weather, audio, narrative, 
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conversation, text, lighting, animation, character design, and full level design with 
gameplay implications. This is sometimes “offline” (or maybe triggered when the 
player first sees an area) and sometimes happening at runtime continuously as a 
reaction to game events.

I think that with machine learning as a viable new computer science tool, procedural 
content should be the common case instead of an exception in the future, and is an 
important area for research and development.
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PROCEDURAL CONTENT STRATEGY

InputInput ExpansionExpansion InterpretationInterpretation

Here’s a general strategy for procedural content.

Take some small or noisy INPUT signal
EXPAND it by the procedural core
And then INTERPRET the result in a meaningful way for the game
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SIDEFX HOUDINI

Image from a Houdini modeling tutorial by PaQ WaK https://www.youtube.com/watch?v=Vx_kYEUvYCA

You should be further inspired that one of the leading tools in procedural content 
generation is Houdini by SideFX, which was founded by University of Waterloo alumni 
and is located nearby in Toronto.

The key to most procedural content is combining the creation of detail by an 
algorithm with a tool that allows control of the content at a high level. Unreal and 
Unity provide tools for this. Houdini is one of the industry standards for both real-
time game procedural content and offline. For example, here this city is almost 
entirely created procedurally in Houdini.
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PROCEDURAL CONTENT STRATEGY

Input

Initial State

Input

Initial State

Expansion

Grammar

Expansion

Grammar

Interpretation

Explicit Geometry Instances

Interpretation

Explicit Geometry Instances

Houdini SideFX via PaQ WaK tutorial 

The Houdini city example used an initial state, expanded by a GRAMMAR, and 
interpreted as explicit GEOMETRY instances
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PROCEDURAL CONTENT STRATEGY

Input

Initial State

Input

Initial State

Expansion

Grammar

Expansion

Grammar

Interpretation

Explicit Geometry Instances

Interpretation

Explicit Geometry Instances

Transformations in architectural scenes, Muller et al. 2005

This is a very popular technique for buildings and trees…anything with self similarity.
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PROCEDURAL CONTENT STRATEGY

Input

Initial State

Input

Initial State

Expansion

Grammar

Expansion

Grammar

Interpretation

Explicit Geometry Instances

Interpretation

Explicit Geometry Instances

Speed Tree by Interative Data Visualization, Inc.
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NVIDIA GAUGAN DEMO

Try it live online at http://nvidia-research-mingyuliu.com/gaugan/

Details: Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization, CVPR 2019

The cutting edge of procedural content creation today is using machine learning/AI 
for the expansion. Here’s an example from NVIDIA that works entirely in 2D which 
won the Best in Show at SIGGRAPH 2019 real-time live. 

You paint big regions as shown on the left, and a Generative Adversarial Network 
algorithm produces a photorealistic 2D image of a 3D scene on the right. The 3D 
scene never actually exists in this case. Notice that all of the detail is “hallucinated” 
by the algorithm…you say where the trees and water are but don’t have to specify 
the details.

Tools are absolutely the right solution for production work on a team with artists. But 
today we’re going to focus on the code itself for procedural content. The idea here is 
to create art using only code, where we don’t even have to specify regions for trees 
and water but let them emerge themselves. What is cool about the 100% code 
approach is that it can create scenes that look good but where you as the creator can 
be surprised by what you discover within them, since you didn’t steer it at all at a low 
level. 

That is, you create the rules of the universe, but let those rules create everything 
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within it for you.
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PROCEDURAL CONTENT STRATEGY

Input

Initial State
Painted Mask

Input

Initial State
Painted Mask

Expansion

Grammar
ML Inference

Expansion

Grammar
ML Inference

Interpretation

Explicit Geometry Instances
Pixel Colors

Interpretation

Explicit Geometry Instances
Pixel Colors

Semantic Image Synthesis with Spatially-Adaptive Normalization Park et al. 2019

GAUGAN used a painted mask, expanded by ML inference, and interpreted the 
output as pixel colors
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PROCEDURAL CONTENT STRATEGY

Input

Initial State
Painted Mask
Random Seed

Input

Initial State
Painted Mask
Random Seed

Expansion

Grammar
ML Inference

Fractal Brownian Motion

Expansion

Grammar
ML Inference

Fractal Brownian Motion

Interpretation

Explicit Geometry Instances
Pixel Colors

Implicit Geometry

Interpretation

Explicit Geometry Instances
Pixel Colors

Implicit Geometry

No Man’s Sky, Hello Games

The rest of the examples I’m going to show you today are more like the planet part of 
No Man’s Sky. They use:

Random Seed input
Which is expanded by multiple octaves of pseudorandom noise 
And interpreted as implicit 3D geometry

There are plenty of other alternatives…
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PROCEDURAL CONTENT STRATEGY

Input

Initial State
Painted Mask
Random Seed
Latent Vector

…

Input

Initial State
Painted Mask
Random Seed
Latent Vector

…

Expansion

ML Inference
Grammar

Fractal Brownian Motion
Iterated Function System

Escape Time System
Finite Automata

Simulation
…

Expansion

ML Inference
Grammar

Fractal Brownian Motion
Iterated Function System

Escape Time System
Finite Automata

Simulation
…

Interpretation

Explicit Geometry Instances
Pixel Colors

Implicit Geometry
RPG Stats

Joint Angles
Audio

…

Interpretation

Explicit Geometry Instances
Pixel Colors

Implicit Geometry
RPG Stats

Joint Angles
Audio

…

And here are some other tools for each of these boxes
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SOME PROCEDURAL CONTENT KEYWORDS

• Wave Function Collapse (https://github.com/mxgmn/WaveFunctionCollapse)

• Boids – Flocking Simulation

• Value Noise, Perlin Noise, Worley Noise

• L-System

• Fractal Brownian Motion (FBM)

• Voronoi

• Cellular Automata, Reaction-Diffusion

• Rogue-like

• Kruskal’s Algorithm, Prim’s Algorithm

• Fractals: Mandelbulb/Mandelbrot Set, Appolonian Cube/Gasket, Menger Sponge, 
Iterated Function Systems, Escape Time Algorithm, Limit Set

Each section of this slide deck has some keywords and links for you to look at 
afterwards to follow up for your own exploration.
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SOME PROCEDURAL CONTENT RESOURCES
• PROCJAM (Nov 2019) http://www.procjam.com/

• Spelunky, Derek Yu 2016 (the book) https://bossfightbooks.com/products/spelunky-by-derek-yu

• Procedural Generation in Game Design, Short & Adams 2017 https://amzn.to/33WMJNV

• Texturing and Modeling, Ebert et al. 2002 https://amzn.to/32u8lRI

• Amit Patel https://www.redblobgames.com/

• Galaxy Kate http://www.galaxykate.com/

• Inigo Quilez https://www.iquilezles.org/www/index.htm

• Peter Wonka http://peterwonka.net/Publications/publications.html

• Pascal Muller https://scholar.google.com/citations?user=Mkf-G5wAAAAJ&hl=en

• Craig Reynolds https://www.red3d.com/cwr/

• Ken Perlin https://mrl.nyu.edu/~perlin/

• Daniel Shiffman https://shiffman.net/

• Mike Bostock https://bost.ocks.org/mike/algorithms/

• Dwarf Fortress World Gen https://dwarffortresswiki.org/index.php/v0.34:Advanced_world_generation

• Mazes for Programmers, Jamis Buck 2015 https://pragprog.com/book/jbmaze/mazes-for-programmers

• AI for Games, Ian Millington 2019 https://amzn.to/32t2HPR

• Melodrive Blog http://melodrive.com/blog/

• Spider Man city  https://www.youtube.com/watch?v=4aw9uyj9MAE

• Horizon Zero Dawn clouds https://bit.ly/1K1VrK3
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RAY TRACING

We first need to know how to draw procedural model before we can generate 
interesting models; otherwise we can’t see what we’re creating and debugging. So, 
let’s talk about ray tracing for a moment.
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RAY TRACING

© 2012 Morgan McGuire, from http://graphicscodex.com 

Almost all rendering works by putting a virtual camera in a 3D scene and then tracing 
a light ray back through each pixel to find out what colored the pixel. It then traces 
some additional light rays back to find out where the light originally came from, 
which is ultimately going to be something like the sun or a light bulb.

There are a lot of different algorithms for rendering. The core operation for all of 
them is tracing a single ray of light until it hits something in the scene. This is called 
“ray casting” or “RAY TRACING” in common graphics jargon, (although we also use 
that phrase to refer to entire rendering algorithm sometimes!)

Here are two ways of implementing the RAY TRACING operation for surfaces:
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EXPLICIT SURFACE RAY TRACING
class Point { x, y, z }
class Vector { x, y, z }

class Ray { Point origin, 
Vector direction }

class Triangle { Point vertex[3] }
class Mesh { Triangle[] }

Image from “The Amazing Wireframe Shader” by Arkhivrag, http://u3d.as/86j

If the 3D scene is made out of triangles or subdivision patches, then the algorithm for 
solving this is explicit surface ray tracing. A special case of this is rasterization, but I’m 
not going into that today.

This is how most rendering is done, both real-time and offline.

This image reveals its underlying triangle mesh representation as it fades in on the 
right as a visualization. I put some simple code for how the world is represented for 
this kind of explicit surface triangle mesh.
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EXPLICIT SURFACE RAY TRACING
class Point { x, y, z }
class Vector { x, y, z }

class Ray { Point origin, 
Vector direction }

class Triangle { Point vertex[3] }
class Mesh { Triangle[] }

Foundational research:
• Some techniques for shading machine renderings of solids, Appel 1968
• An improved illumination model for shaded display, Whitted 1980
• A 3-dimensional representation for fast rendering of complex scenes, Rubin and Whitted, 1980
• The rendering equation, Kajiya 1986

© 2012 Morgan McGuire, from http://graphicscodex.com 

The actual rendering algorithm involves doing some geometry work to compute 
where the light ray hits one triangle, and then applying that to all of the triangles in 
the mesh.

On the bottom I’ve highlighted some key research papers that developed us towards 
the state of the art for this kind of rendering.

The great news is that while this is something you can implement yourself (and will in 
the intro graphics course!), today GPUs and high-level APIs like Vulkan…
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have it all built in, so you get a really fast and already debugged implementation. By 
really fast, I mean processing billions of rays per second against millions of triangles.
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EXPLICIT SURFACE RAY TRACING RESOURCES

• Ray Tracing in One Weekend, Shirley 2018 
http://www.realtimerendering.com/raytracing/Ray%20Tracing%20in%20a%20Weekend.pdf

• The Graphics Codex, McGuire 2019 http://graphicscodex.com/

• Introduction to DXR by Adam Marrs http://www.visualextract.com/posts/introduction-to-dxr/

• Computer Graphics: Principles & Practice, Hughes et al. 2013 https://amzn.to/2pLKKgB

Free chapter on ray tracing http://cgpp.net/file/cgpp3e_ch15.pdf

• Physically-Based Rendering, Pharr et al. 2016 http://www.pbr-book.org/

• Fundamentals of Computer Graphics, Marschner and Shirley 2015 https://amzn.to/2ocrqZK

• Real-Time Rendering, Akenine-Möller et al. 2018 https://amzn.to/2P7nynI ch. 19, 22, 24

Free chapter on ray tracing APIs: http://www.realtimerendering.com/Real-Time_Rendering_4th-Real-Time_Ray_Tracing.pdf

You can look at some of these resources after the talk from my online slides to learn 
more about explicit surface ray tracing on CPUs and GPUs.
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IMPLICIT SURFACE AND VOLUMETRIC RAY TRACING

function distanceToSurface(Point p)

or

function densityOfVolume(Point p)

Foundational research:
• A generalization of algebraic surface drawing, Blinn 1982
• Marching cubes: a high resolution 3D surface construction algorithm, Lorensen and Cline 1987
• Ray tracing deterministic 3-D fractals, Hart et al. 1989
• Sphere tracing: a geometric method for antialiased ray tracing of implicit surfaces, Hart 1996
• Enhanced sphere tracing, Keinert et al. 2014

Image by William Donnelly from GPU Gems 2, Chapter 8

Sometimes it is better to represent the scene using an implicit volumetric 
representation. This is how fluids, smoke, …and certain kinds of procedural content 
are handled. 

You can render these by converting the implicit surface to an explicit surface (or the 
volume to a whole lot of particle surfaces) and then running an explicit surface ray 
tracer.  That is how most mainstream graphics works today because it can take 
advantage of highly optimized explicit surface ray tracing implementations.

OR, you can directly render the distance or density function by “marching” along a 
ray through 3D space. That is what we’re going to do. The reason we’ll use this is that 
it is extremely elegant to not make an intermediate representation, and when the 
model is incredibly detailed or constantly changing, it is also faster to work with the 
implicit form instead of expanding it into triangles.

Let me show you a simple example of defining geometry for this kind of renderer…

(This figure is by Donnelly, who was a Waterloo alumnus)
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IMPLICIT SURFACE RAY TRACING RESOURCES

• The Graphics Codex, McGuire 2019 http://graphicscodex.com/ “Ray Marching” chapter

• Modeling with Distance Functions by Inigo Quilez 
http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm

• Ray marching and signed distance functions by Jamie Wong http://jamie-wong.com/2016/07/15/ray-marching-
signed-distance-functions/

• Implicit Curves and Surfaces, Wyvill 2009

• Level Set Methods and Dynamic Implicit Surfaces, Osher and Fedkiw 2003

• Implicit surfaces by Paul Bourke http://paulbourke.net/geometry/implicitsurf/

• Inigo Quilez https://www.iquilezles.org/

• Brian Wyvill http://webhome.cs.uvic.ca/~blob/
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MODELING IMPLICIT SURFACES
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C

P

SPHERE SIGNED DISTANCE FUNCTION

function distanceToSurface(Point P)
Vector delta = P – C
return length(delta) - radius

radius

function length(Vector v)
return sqrt(v.x2 + v.y2 + v.x2)
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UNION OF TWO SPHERES

function distanceToSurface(Point P)
Vector cdist = length(P – C) - radius
Vector ddist = length(P – D) - radius    
return min(cdist, ddist)

C

P

function length(Vector v)
return sqrt(v.x2 + v.y2 + v.x2)

D

That’s a really easy way to compose shapes. This is the basic idea we’ll use to create 
complicated geometry from simple pieces.

Even better, to get a more natural form, you can simply tweak the operation used to 
combine the two underlying distance functions
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BLENDING TWO SPHERES

function distanceToSurface(Point P)
Vector cdist = length(P – C) - radius
Vector ddist = length(P – D) - radius    
return smoothmin(cdist, ddist)

C

P

function smoothmin(a, b)
c = max(0, min(1, ½ + b – a)) 
return c * b + (a – ½) * c * (1 - c)D

Automatic surface generation in computer aided design, Hoffman and Hopcroft, 1985

Here I’m using a SMOOTHMIN instead of a strict minimum. It blends the two shapes 
together instead of taking the union to create a sharp boundary.

With distance function representations, there are a lot of elegant ways to combine 
shapes: intersection, union, subtraction, reflections, repetition, twists, rigid 
transformations, skew, etc., and smooth versions of all of those. Here are some 
references that you can use as a kind of implicit surface cookbook.
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THE SHADERTOY DEMOSCENE

The “shadertoy” website is a simple code editor for writing GPU programs in a web 
browser. Its best feature is that you can see the source code for everyone else’s 
programs, so you can learn by modifying and copying their code. There is also a really 
supportive community on the site that will cheer you on and help debug and optimize 
your programs.
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SNAIL

Íñigo Quílez

https://www.shadertoy.com/view/ld3Gz2
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RED CELLS
https://www.shadertoy.com/view/MsXXWH

Paul Malin

52



HOLY GRAIL QUEST II
https://www.shadertoy.com/view/MtfGWM

eiffie
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VENICE
https://www.shadertoy.com/view/MdXGW2

Reinder Nijhoff
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ETHICS GRADIENT
https://www.shadertoy.com/view/tdGGRh

shau
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GENERATORS
https://www.shadertoy.com/view/Xtf3Rn

kali
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GETTING STARTED WITH SHADERTOY

Video tutorial by Quilez
https://www.youtube.com/watch?v=0ifChJ0nJfM

Blog tutorial by Neyret
https://shadertoyunofficial.wordpress.com/

Example Implicit Surface Ray Tracer
https://www.shadertoy.com/view/Ms2SWw

Example Explicit Surface Ray Tracer
https://www.shadertoy.com/view/XdsGWS

Mandelbulb Fractal Explained
https://www.shadertoy.com/view/XsXXWS
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BUILDING A TINY PLANET
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I ♥ ABSTRACTION

One of the great things about shadertoy is that anybody can look at your code. So, we 
all get to learn from each other and new coders can quickly get up to speed.

The clearer that you make your shaders, the more that you’ll help advance the field 
and bring new people into graphics. I try to always make a cleanup pass with extra 
comments and abstractions…in fact, most of my shadertoy use has just been showing 
how pieces of other people’s demos work.

OK, so here’s what I wanted to do:
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CONCEPT ART (FROM OTHERS)

Actual Earth from Space

Sky-colored halo “atmosphere”
Elevated clouds
Sky-colored halo “atmosphere”
Elevated clouds
Sky-colored halo “atmosphere”
Elevated clouds

Key/Fill/Back lightsKey/Fill/Back lightsKey/Fill/Back lights

Oversized featuresOversized featuresOversized features

Here’s the kind of little prince tiny planet visual I wanted to hit.
First, you’ll notice that this looks nothing like actual photos of the Earth from outer 
space.
So, some of the things we want are:
- The atmosphere is radically expanded so that the planet is silhouetted against a 

halo of “terrestrial sky” color instead of outer space
- Clouds are expanded outward and cast large shadows
- Although the real earth experiences strong directional lighting with no bounce, 

these planets have at least 3-point lighting

- If you don’t add the lighting and the sky background, the planet looks cold and sad.
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ATMOSPHERE

Here we go again. We start with the black screen.
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ATMOSPHERE

vec2 delta = (fragCoord.xy - iResolution.xy * 0.5) *
invResolution.y * 1.1;

float atmosphereRadialAttenuation =
min(1.0, 0.06 * pow8(max(0.0, 1.0 - (length(delta) - 0.9) / 0.9)));

I add a turquoise radial gradient
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ATMOSPHERE

float radialNoise = mix(1.0, noise(normalize(delta) * 40.0 + iTime * 0.5), 0.14);

Make some radial streaks (I don’t care about the center, which will be covered by the 
planet)
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ATMOSPHERE

float galaxyClump = (pow(noise(fragCoord.xy * (30.0 * invResolution.x)), 3.0) * 0.5 +
pow(noise(100.0 + fragCoord.xy * (15.0 * invResolution.x)), 5.0)) / 1.5;

L_o = Color3(galaxyClump * pow(hash(fragCoord.xy), 1500.0) * 80.0);

// Color stars
L_o.r *= sqrt(noise(fragCoord.xy) * 1.2);
L_o.g *= sqrt(noise(fragCoord.xy * 4.0));

// Twinkle
L_o *= noise(time * 0.5 + fragCoord.yx * 10.0);

Add some stars
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ATMOSPHERE

vec2 rel = 0.65 * (fragCoord.xy - iResolution.xy * 0.5) / iResolution.y;
float a = min(1.0,

pow(max(0.0, 1.0 - dot(rel, rel) * 6.5), 2.4) + 
max(abs(rel.x - rel.y) - 0.35, 0.0) * 12.0 +                   
max(0.0, 0.2 + dot(rel, vec2(2.75))));

float planetShadow = mix(minVal, maxVal, a);

Ad the cut out what will be the shadow of the planet on its own “atmosphere”
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MOUNTAINS

For the terrain, we start with a sphere distance function.
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MOUNTAINS

Then we distort the elevation by a noise function over the surface of the sphere.
This is 6th order fractal Brownian motion, raised to the third power so that the 
mountains are more rare and steep.
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OCEANS

If the elevation is below sea level, we code that as water and pull the surface up to be 
at sea level (but keep track of how deep the water is).
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OCEANS

If the elevation is below sea level, we code that as water and pull the surface up to be 
at sea level (but keep track of how deep the water is).
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MOUNTAINS

Above a certain elevation, we’ll classify the surface as rock
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ICE AND SAND

With ice at the poles and really high elevations

And sand along beaches and for some equatorial deserts

71



VEGETATION

Let’s grow some trees wherever the climate is good and the terrain is not too steep.
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LIGHTING Key Light
(Sun)

Fill Light Back/Rim Light &
Atmospheric Perspective

I effectively lit the scene with standard three-point lighting, although that “fill” light is 
really a bit more complicated and includes a reflection environment from all 
directions.

The key light is the only one that is shadowed.
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OCEAN WAVES

I effectively lit the scene with standard three-point lighting, although that “fill” light is 
really a bit more complicated and includes a reflection environment from all 
directions.

The key light is the only one that is shadowed.
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Nelson Max 1981, Darwin Peachy 1986, Alain Fournier & William T. Reeves 1986

Wave phase = 2D path integral of friction since formation  

Wave fronts form perpendicular to wind in deep water
Refract in shallow water so always parallel to shore

My approximation: 
deep wave phase = cylindrical position on globe
shallow wave phase = local water depth
(perfect for linear continental shelf, terrible for underwater cliffs)

OCEAN THEORY

Waves refract. I’m not talking about light, I’m talking about the shape of the 
geometry…it bends so that waves always come in to shore almost parallel.

You can simulate this with an expensive path integral over the entire distance 
travelled since the wave formed, as described in these three papers.
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Nelson Max 1981, Darwin Peachy 1986, Alain Fournier & William T. Reeves 1986

Wave phase = 2D path integral of friction since formation  

Wave fronts form perpendicular to wind in deep water
Refract in shallow water so always parallel to shoreOCEAN THEORY

What this means is that in the real world, waves far from shore have a direction 
based on the wind and waves coming in to shore are always parallel to the shoreline. 

In this Google Maps photograph, you can see the waves parallel to the shore. Theory 
tells us how they’ll refract if the shore has a complex shape…

And indeed, that is what you’ll see in this other photograph. The path integral is too 
expensive for use in the shader.

I use a simple approximation, instead: If we assume that the underwater shore falls 
off with a constant slope (which is somewhat reasonable), then the path integral is 
proportional to the distance between sea level and the ocean floor. 
We can just substitute the elevation as the phase for a sine wave and get proper wave 
refraction phenomena.
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Wave phase = 2D path integral of friction since formation  

Wave fronts form perpendicular to wind in deep water
Refract in shallow water so always parallel to shoreOCEAN THEORY

You can see that in this debug view…the waves are always parallel to the shoreline in 
shallow water in the tiny planet.
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OCEAN IMPLEMENTATION
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CLOUDS

float cloudDensity(Point3 X, float t) {
return 0.1;

}

Now I’ll make some clouds.  They aren’t a surface, so instead of a distance-to-surface 
function, I define a density function for every point in space. 

If I make the density uniform, then it just looks like the planet is covered in fog. 

You can see a few mountain peaks sticking up. I’ve turned off the planet shading, so 
the mountains are just black right now.
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CLOUDS

float cloudDensity(Point3 X, float t) {
Point3 p = X * vec3(1.5, 2.5, 2.0);
return fbm5(p) - 0.42;

}

If I use a 3D noise function for the cloud density, then we get nice variation creating 
weather patterns. They are too regular, however.
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CLOUDS

float cloudDensity(Point3 X, float t) {
Point3 p = X * vec3(1.5, 2.5, 2.0);
return fbm5(p + 1.5 * fbm3(p)) - 0.42;

}

Iterating on the noise function by feeding it back into itself makes the clouds start to 
swirl.

I can also make them develop over time by making the argument depend on the 
current time, which is “t” here.
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Now, let’s put it all together. Here’s the atmosphere (without the planet shadow)
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With the planet on top
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https://www.shadertoy.com/view/lt3XDM

And the clouds on top. 

There are some other things I’m doing here, like post-process color grading, 
antialiasing, and variable resolution rendering which you can see in the full shader.

84



SUMMARY 1/2: PROCGEN & RAY TRACING

Procedural content

• You create the rules, the rules create the art

• Signal → Expansion → InterpretaƟon

• Geometry, texture, narrative, music, stats, animation…

• Iterative process

Ray tracing for implicit and explicit geometry

• Implicit geometry is often easier to synthesize

• Explicit geometry has hardware rendering support

• Can convert between them

Shadertoy for experimentation with ray tracing and procedural content
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SUMMARY 2/2: THE TINY PLANET

• Art direction!

• Reference & concept art

• Material, geometry, animation, and lighting

• Value noise with fractal brownian motion for terrain

• Elevation, slope, and latitude determine biome

• Approximated path integral creates refracting ocean waves 

• Volumetric ray marching for clouds

• Performance and post-processing polish
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https://www.shadertoy.com/view/4tjGRh https://www.shadertoy.com/view/XsVBWG https://www.shadertoy.com/view/XlVGR3

https://www.shadertoy.com/view/4d2fzw https://www.shadertoy.com/view/WdB3Ry https://www.shadertoy.com/view/ls2Bzd

https://www.shadertoy.com/view/4dsyRn https://www.shadertoy.com/view/4lf3Rj https://www.shadertoy.com/view/Xlc3Rf

Here are some variations on this theme by others.

I hope that you’ll download these slides to get the code links, and then take some 
time tonight or this weekend to start your own experiments. Here’s my email and 
Twitter. Please share what you create!

Thank you.
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THANK YOU

Contact: @CasualEffects on Twitter | morgan@casual-effects.com

Slides hosted at https://casual-effects.com

More details in the Graphics Codex http://graphicscodex.com

PROCJAM November 2019 http://www.procjam.com/

Thanks to Peter Shirley, Josef Spjut, Sina Nabizadeh, and Inigo Quilez for help preparing this talk.

88



89



RECIPE FOR A PLANET

• Happy 2D halo + star field

• Sphere trace a noisy sphere

• Only trace 2D planetary disk

• Sea level threshold

• Ocean wave refraction physics

• Material from latitude, elevation, and slope

• Shadowed key light + unshadowed fill + environment map 
reflection

• Distance fog

• Ray march 1/32 resolution clouds, stopping at depth buffer

• Bloom and tone map post FX

• Simple temporal antialiasing when not moving too fast

If I just render what I described, it flickers and aliases terribly. So, I apply very simple 
temporal antialiasing, since I know the motion. When you use the mouse to rotate 
quickly, I lower the AA amount to avoid ghosting.

So, this is basically a classic heightfield scene like I learned to draw from Inigo, but 
wrapped onto a sphere. I’m a sailor, though, and the trick I’m most proud of is the 
ocean waves….
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RAY TRACING A TINY PROCEDURAL PLANET

Dynamic procedural worlds are magical. They have limitless detail to explore and can surprise even their
creators, who work with small amounts of elegant code. Minecraft and No Man's Sky are two examples of
great games built entirely on procedural generation and detailed simulation. In this talk I first describe real-
time ray tracing of implicit surfaces and give a tour of the Shadertoy online playground for real-time graphics
exploration. I then show how I art directed and implemented the popular "Tiny Planet" real-time demo using
procedural generation, dynamic simulation, and ray tracing, all implemented as 600 lines of GPU shader
code. Attendees with a year of programming experience will be able to immediately begin their own
experiments in procedural content and ray tracing online after the talk, supported by links from the slides
and follow-up details in the Graphics Codex.

Dr. Morgan McGuire is a Distinguished Research Scientist at NVIDIA and 
adjunct professor at the University of Waterloo and McGill University. Morgan 
is the coauthor of The Graphics Codex, Computer Graphics: Principles and 
Practice, and Creating Games books and many research papers; contributed 
to the Skylanders, ROBLOX, Marvel Ultimate Alliance, Call of Duty, and Titan 
Quest games; and taught for 12 years at Williams College.
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